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Abstract— Incorporating individual user preferences in 

statewide transportation planning is of great importance 

regarding revenue management and behavioral equity. However, 

an enduring challenge is that consistent population travel data 

remains scarce, particularly in underserved and rural areas. 

Moreover, large-scale optimization models are computationally 

demanding when considering stochastic travel demands in a 

discrete choice model (DCM) framework. These can be 

addressed with a combination of synthetic population data and 

deterministic taste coefficients. We formulate a choice-based 

optimization model, in which the mode share in each block 

group-level trip OD is determined by a set of deterministic 

coefficients reflecting user preferences. In that case, statewide 

service region design becomes an assortment optimization 

problem with known parameters and linear constraints, which 

can be efficiently solved through linear or quadratic 

programming (depending on variant). We test the method using 

a hypothetical a new mobility service considered for New York 

State. The proposed model is applied to optimize its service 

region with one of the three objectives: (1) maximizing the total 

revenue; (2) maximizing the total change of consumer surplus; 

(3) minimizing the disparity between disadvantaged and non-

disadvantaged communities.

I. INTRODUCTION

Transportation policies, plans, and projects require the 
support of mathematical models due to the substantial cost of 
infrastructure and the need to assess system performance [1]. 
There are many studies that formulated optimization models to 
support transportation planning, which aims to improve service 
efficiency [2], collect revenue [3], or capture behavioral equity 
[4]. At the large scale, statewide transportation models are 
crucial to analyze the impact of policies and trends that are 
implemented or addressed by state governments, but not 
captured at a local city or community level [5].  

However, an enduring challenge in incorporating user 
preferences into statewide models is that consistent population 
travel data remains scarce, particularly for underserved and 
rural communities. Models are estimated using survey data 
collected by metropolitan planning organizations (MPOs) for 
urban areas, not for rural communities. The lack of 
representative data at the state level can lead to the ignorance 
of specific user groups and exacerbations of social inequity [6]. 
Moreover, though user preferences can be captured by the 
discrete choice models (DCMs), their stochastic properties 
result in nonlinear or nonconvex demand functions, which are 
difficult to embed in large-scale optimization models 
governing the supply-related decisions [7-9]. Whereas Pacheco 
et al. [10] have presented the feasibility of integrating mixed 
logit models into mixed-integer linear programming (MILP) 
models via a simulation-based linearization approach, longer 
computational time compared with conventional MILP still 
hinders its application to large transportation network. 

These issues can be addressed with a combination of 
synthetic population data and deterministic user preferences 
estimated within a DCM framework. On the one side, a 
growing number of companies and institutions have 
synthetized trip details for total population by integrating large-
scale ICT data [11-12]. For instance, Replica Inc. (2021) has 
developed a nationwide synthetic population dataset that 
includes both sociodemographic information and trip details 

[13]. With this unique data opportunity, it is now possible to 
develop choice models that can account for travelers in 
underserved areas. On the other side, the availability of large 
datasets has induced the development of individual parameter 
logit (IPL) models, which estimate unique sets of taste 
coefficients per individual or agent [14-15]. In that case, the 
derivation of travel demands can be deterministic (a 
summation of individual/agent choices) instead of stochastic 
(an integral of parametric distribution). 

This paper formulates a choice-based optimization model 
for statewide mobility service region design. The mode share 
in each block group-level trip origin-destination (OD) pair is 
determined by a set of coefficients deterministically estimated 
by an agent-based mixed logit (AMXL) model [9]. We show 
that given one or two new mobility services, the statewide 
service region design can be formulated as an assortment 
optimization problem in which the mobility providers pick 
regions and OD pairs to serve according to the mode choice 
decisions made by travelers. In an empirical study, we apply 
the proposed model to New York State. The synthetic 
population data is provided by Replica Inc. The block group-
level mode choice coefficients are retrieved from a public 
dataset owned by C2SMART center [16]. We illustrate the 
method with a hypothetical new mobility service in New York 
State to show how we would optimize its service region 
regarding the total revenue and equity impacts. 

The remainder of the paper is organized as follows: The 
next section introduces the proposed model in detail, including 
its theoretical structure and programming formulation. The 
third section gives the results of the empirical study and the 
analysis of optimization results. The final section draws some 
conclusions and makes some discussions for future work. 

II. PROPOSED MODEL

A. Choice-based optimization with deterministic coefficients

Choice-based optimization typically anticipates
individuals’ (or agents’) choice behavior with a discrete choice
model (DCM) following random utility theory. We refer
interested readers to [17-18]. The basic assumption is that
individuals or agents make choices by maximizing their overall
utility that consists of a deterministic part and a random part.
McFadden and Train (2000) defined a general framework that
includes any discrete choice model with the assumption of
Gumbel distributed random utility [19]. They called this mixed
logit (MXL), which is a multinomial logit (MNL) model with
stochastic coefficients 𝜃 drawn from a cumulative distribution
function.

In the context of this paper, the utility function of choosing 
mode 𝑘 to travel from node 𝑢 to 𝑤 is defined in Eq. (1): 

𝑈𝑢𝑤
𝑘 = 𝑉𝑢𝑤

𝑘 + 𝜀𝑢𝑤
𝑘 = 𝜃𝑢𝑤𝑋𝑢𝑤

𝑘 + 𝜀𝑢𝑤
𝑘 (1) 

where 𝑉𝑢𝑤
𝑘  is the deterministic utility that is determined by a

vector of trip attributes 𝑋𝑢𝑤
𝑘  and a vector of taste coefficients

𝜃𝑢𝑤 ; 𝜀𝑢𝑤
𝑘  is the random utility usually assumed to be

independent and identically distributed (i.i.d.). According to 
[19], the total demand for trip mode 𝑘 is defined in Eqs. (2)-
(4): 
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𝐷𝑘 = ∑ ∑ 𝑑𝑢𝑤
𝑘

𝑤∈𝑁𝑢∈𝑁

, ∀𝑘 ∈ 𝐾 (2) 

𝑑𝑢𝑤
𝑘 = 𝑑𝑢𝑤 . 𝑃𝑢𝑤(𝑘|𝑋𝑢𝑤

𝑘 , 𝜃), ∀𝑘 ∈ 𝐾 (3) 

𝑃𝑢𝑤(𝑘|𝑋𝑢𝑤
𝑘 , 𝜃) = ∫

𝑒𝑋𝑢𝑤
𝑘 .𝜃

∑ 𝑒𝑋𝑢𝑤
𝑘′ .𝜃

𝑘′∈𝐾

. 𝑔(𝜃|) 𝑑𝜃 (4) 

where 𝐾 is the choice set of trip modes; 𝑑𝑢𝑤
𝑘  is the demand for

mode 𝑘 for OD 𝑢𝑤; 𝑑𝑢𝑤  is the total travel demand for OD 𝑢𝑤 
assumed to be fixed (won’t change with the choice set) and 

can be observed from travel data; 𝑃𝑢𝑤(𝑘|𝑋𝑢𝑤
𝑘 , 𝜃)  is the

probability of choosing mode 𝑘 given trip attributes 𝑋𝑢𝑤
𝑘  and

taste coefficients 𝜃 . The taste coefficients 𝜃  vary across 
individuals or agents (in MXL) according to a probability 
distribution function 𝑔(. )  with distribution parameters 
included in   (e.g., means and covariance of Gaussian 
distribution). 

Incorporating Equation (4) into optimization models is 
computationally demanding. A more efficient way is to 
estimate a set of coefficients, 𝜃𝑢𝑤, for each OD pair within a 
DCM framework. In that case, the integral of the parametric 
distribution can be replaced by the summation of OD pair-
level mode shares, as shown in Eq. (5): 

𝐷𝑘 = ∑ ∑ 𝑑𝑢𝑤 .
𝑒𝑋𝑢𝑤

𝑘 .𝜃𝑢𝑤

∑ 𝑒𝑋𝑢𝑤
𝑘′

.𝜃𝑢𝑤𝑘′∈𝐾

, ∀𝑘 ∈ 𝐾

𝑤∈𝑁𝑢∈𝑁

 (5) 

where 𝜃𝑢𝑤  can be estimated through various approaches, 
including linear regression, evolutionary plus gradient-based 
algorithm, and inverse optimization. We refer interested 
readers to [9,14,15]. 

In this paper, 𝑋𝑢𝑤 , 𝑑𝑢𝑤  and 𝜃𝑢𝑤  are assumed to be 
deterministic values (treated as inputs in the optimization 
model), where 𝜃𝑢𝑤 varies for each OD pair. Since the demand 
can be directly calculated, determining whether mode service 
𝑘 should be available for OD 𝑢𝑤 can be formulated as a linear 
knapsack problem or assortment problem with efficient 
algorithms to solve on a large scale [20].  

B. Parameters and Decision Variables

The proposed model for service region optimization
assumes that there will be new mobility services selecting 
operating zones and OD pairs, in which the fleet size should be 
decided to provide bi-direction trip services to meet the 
demands on the operated OD pairs. Each vehicle has a 
maximum service distance and a maximum number of trips per 
day. Under this setting, parameters in the proposed model 
consist of three parts:  

• Trip attributes observed from synthetic population data.

• Deterministic taste coefficients estimated within the DCM
framework.

• Variables defining the budget and performance of the new
mobility services.

For a single mobility service, the single-service region
design problem can be formulated as a linear programming (LP) 
problem. For two mobility services, the multi-service region 

assortment problem can be formulated as a quadratic 
programming (QP) problem. Table I lists the parameters and 
decision variables used in our model. The decision variables 
for two mobility services can be found in the Appendix. 

TABLE I. NOTATIONS USED IN THE PROPOSED MODEL 

Trip attributes observed from synthetic population data 

𝑍 The set of counties in New York state 

𝑁 The set of block groups in New York state  

𝑁𝑖  The set of block groups in county 𝑖𝑍 

𝐾− The mode choice set without the new mobility service 

𝐾+ The mode choice set with the new mobility service 

𝑋𝑢𝑤
𝑘

A vector of trip attributes (including average travel time, 
average monetary cost, and mode constant) from block 
group 𝑢𝑁 to 𝑤𝑁 using mode k 

𝑑𝑢𝑤 
Travel demand (trips/day) on the OD pair from block 
group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝑙𝑢𝑤 Trip length (km) from block group 𝑢𝑁 and 𝑤𝑁, 𝑢 ≠ 𝑤 

Deterministic taste coefficients estimated within the DCM framework 

𝜃𝑢𝑤 
A vector of mode choice coefficients for trips from block 
group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝑉𝑢𝑤
𝑘 The deterministic utility of traveling from block group 

𝑢𝑁 to 𝑤𝑁 using mode k 

𝑑𝑢𝑤
𝑘 The estimated demand (trips/day) of mode 𝑘  on the OD 

pair from block group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝑠𝑢𝑤
𝐾 Consumer surplus of traveling from block group 𝑢𝑁  to 

𝑤𝑁, 𝑢 ≠ 𝑤, given the mode choice set 𝐾 

Variables defining the new mobility services 

𝑂 The maximum number of operating zones 

ℱ𝑚𝑎𝑥 The maximum fleet size in total (vehicles/day) 

𝐹𝑚𝑎𝑥, 
𝐹𝑚𝑖𝑛

The maximum and minimum fleet size in each operating 
zone (vehicles/day) 

𝑡𝑢𝑤
𝑘̂  

Trip duration (minutes) of the new mobility service on the 
OD pair from block group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝑐𝑢𝑤
𝑘̂  

Trip fee ($/trip) of the new mobility service on the OD pair 
from block group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

𝐿 The maximum distance (km) a vehicle can serve per day 

𝑇 The maximum number of trips a vehicle can serve per day 

Decision variables (single-service region design) 

𝑦𝑖
A binary variable that indicates whether county 𝑖𝑍  is 
included into the service region  

𝑥𝑢𝑤
A binary variable that indicates whether the OD pair from 
block group 𝑢𝑁 to 𝑤𝑁 is operated 

𝑓𝑢𝑤
The fleet size (vehicles/day) on the OD pair from block 
group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

C. Objective function

We considered three objectives of the new mobility service:

• Maximizing the total revenue

• Maximizing the total welfare (change of consumer
surplus)

• Minimizing the welfare disparities between disadvantaged
and non-disadvantaged communities.

The consumer surplus of traveling of OD 𝑢𝑤 given mode
choice set 𝐾, 𝑠𝑢𝑤

𝐾 , is defined as a log-sum of the utilities that
is shown in Eq. (6): 
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𝑠𝑢𝑤
𝐾 = ln (∑ 𝑒𝑋𝑢𝑤

𝑘 .𝜃𝑢𝑤

𝑘∈𝐾

) , ∀𝑢, 𝑤 ∈ 𝑁, 𝑢 ≠ 𝑤 (6) 

For the single-service region design problem, three 
objective functions according to the objectives above is defined 
in Eqs. (7)-(9): 

max
𝑦𝑖,𝑥𝑢𝑤,𝑓𝑢𝑤

∑ ∑ 𝑐𝑢𝑤
𝑘̂ 𝑑𝑢𝑤

𝑘̂ 𝑥𝑢𝑤

𝑤∈𝑁𝑢∈𝑁

 (7) 

max
𝑦𝑖,𝑥𝑢𝑤,𝑓𝑢𝑤

∑ ∑ (𝑠𝑢𝑤
𝐾+

− 𝑠𝑢𝑤
𝐾−

)𝑑𝑢𝑤𝑥𝑢𝑤

𝑤∈𝑁𝑢∈𝑁

(8) 

min
𝑦𝑖,𝑥𝑢𝑤,𝑓𝑢𝑤

∑ ∑(𝑠𝑢𝑤
𝐾+

− 𝑠𝑢𝑤
𝐾−

)𝑑𝑢𝑤𝑥𝑢𝑤

𝑤∈𝑁𝑢∈𝑁𝑛𝑜𝑛_𝑑𝑖𝑠

− ∑ ∑ (𝑠𝑢𝑤
𝐾+

− 𝑠𝑢𝑤
𝐾−

)𝑑𝑢𝑤𝑥𝑢𝑤

𝑤∈𝑁𝑢∈𝑁𝑑𝑖𝑠

(9) 

where 𝑦𝑖 , 𝑥𝑢𝑤 , 𝑓𝑢𝑤  are decision variables indicating whether 
county 𝑖 is included into the service region, whether OD 𝑢𝑤 is 

operated, and the fleet size serving OD 𝑢𝑤 . 𝑑𝑢𝑤  and 𝑑𝑢𝑤
𝑘̂  

denote the total demand and demand for the new mobility 

service for OD 𝑢𝑤 . 𝑐𝑢𝑤
𝑘̂  denotes the trip fare of the new 

mobility service for OD 𝑢𝑤 . 𝑁𝑑𝑖𝑠  denotes the set of block
groups that are identified as disadvantaged communities by 

NYSERDA (2021) [21]. 𝑁𝑛𝑜𝑛_𝑑𝑖𝑠  denotes the set of block
groups that are identified as non-disadvantaged communities. 

𝑠𝑢𝑤
𝐾+

 and 𝑠𝑢𝑤
𝐾−

 denote the social welfare (or consumer surplus)
with and without the new mobility service, as defined in Eq. 
(6), in which 𝑉𝑢𝑤

𝑘  denotes the utility of traveling from block
group 𝑢𝑁 to 𝑤𝑁 using mode k. The objective functions for 
multi-service region assortment problem can be found in the 
Appendix.  

D. Constraints

Eqs. (10) - (20) are constraints of the single-service region
design problem regarding total budget and network 
characteristics. Eqs. (10) - (11) ensure the number of service 
zones and vehicle fleet size are restricted by the total budget. 
Eqs. (12) - (13) ensure only OD pairs within the service zones 
can be operated and vehicles can only be assigned to operating 
OD pairs, in which 𝑀 is a large positive integer. Eqs. (14) - 
(15) ensure a maximum and minimum fleet size in each service
zone. Eq. (16) ensures a bi-direction trip of the new mobility
service. Eqs. (17) - (18) ensure that the travel demand for an
operating OD pair should be met within the maximum distance
and number of trips per vehicle. Eqs. (19) - (20) define the
types of decision variables.

∑ 𝑦𝑖

𝑖∈𝑍

≤ 𝑂 (10) 

∑ ∑ 𝑓𝑢𝑤 ≤ ℱ𝑚𝑎𝑥 , 𝑢 ≠ 𝑤

𝑤∈𝑁𝑢∈𝑁

 (11) 

∑ ∑ 𝑥𝑢𝑤 ≤ 𝑀𝑦𝑖 , ∀𝑖𝑍, 𝑢 ≠ 𝑤 

𝑤∈𝑁𝑖𝑢∈𝑁𝑖

(12) 

𝑓𝑢𝑤 ≤ 𝑀𝑥𝑢𝑤 , ∀𝑢, 𝑤𝑁, 𝑢 ≠ 𝑤 (13) 

∑ ∑ 𝑓𝑢𝑤 ≤ 𝐹𝑚𝑎𝑥𝑦𝑖 , ∀𝑖𝑍, 𝑢 ≠ 𝑤 

𝑤∈𝑁𝑖𝑢∈𝑁𝑖

(14) 

∑ ∑ 𝑓𝑢𝑤 ≥ 𝐹𝑚𝑖𝑛𝑦𝑖 , ∀𝑖𝑍, 𝑢 ≠ 𝑤 

𝑤∈𝑁𝑖𝑢∈𝑁𝑖

(15) 

𝑓𝑢𝑤 = 𝑓𝑤𝑢, ∀𝑢, 𝑤𝑁, 𝑢 ≠ 𝑤 (16) 

𝐿𝑓𝑢𝑤 ≥ 𝑑𝑢𝑤
𝑘̂ 𝑙𝑢𝑤𝑥𝑢𝑤, ∀𝑢, 𝑤𝑁, 𝑢 ≠ 𝑤 (17) 

𝑇𝑓𝑢𝑤 ≥ 𝑑𝑢𝑤
𝑘̂ 𝑥𝑢𝑤 , ∀𝑢, 𝑤𝑁, 𝑢 ≠ 𝑤 (18) 

𝑦𝑖 , 𝑥𝑢𝑤 {0,1} (19) 

𝑓𝑢𝑤 𝑍+ (20) 

III. CASE STUDY

In this section, we apply the proposed model to New York 
State. We assume there will be a new mobility service selecting 
counties and block-group OD pairs as service regions, as well 

as deciding the fleet size for each OD pair. 𝑋𝑢𝑤
𝑘 , 𝑑𝑢𝑤  are

retrieved from Replica’s synthetic population data. 𝜃𝑢𝑤  are 
retrieved from a public dataset owned by C2SMART center. 
The model is solved with a Gurobi package in Python, which 
takes 5-8 min for each service region optimization on a local 
machine with Intel (R) Core (TM) i7-10875H CPU and 32GB 
installed RAM. Optimization results under different objective 
functions are compared with the baseline using several 
performance metrics. 

A. Data Collection

Replica Inc. developed a nationwide synthetic population
dataset that includes both sociodemographic information and 
trip details (see Fig. 1). Through their data platform, we 
retrieved an aggregated dataset for New York state that 
contains 120,740 rows in total. Each row contains the mode 
choice information of a block-group level trip OD, including 
the block group ID of the origin and destination, number of 
trips per day along an OD pair, average travel time by each 
mode, average monetary cost by each mode, and the current 
mode share.  

Figure 1.  Replica’s synthetic population data platfrom   

source: https://www.replicahq.com/  

Taste coefficients, 𝜃𝑢𝑤, are retrieved from a public dataset 
generated by one of the research projects in C2SMART center. 
These coefficients were estimated within the group level agent-
based mixed (GLAM) logit framework using Replica’s data. 
These coefficients follow an empirical distribution revealing to 

https://www.replicahq.com/
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be neither Gumber nor Gaussian, which captures taste 
heterogeneity to a great extent. We refer interested readers to 
[22].  

Six trip modes are considered, including private auto, 
public transit, on-demand auto, biking, walking, and carpool. 
For each block-group level OD as an agent, the vector 𝜃𝑢𝑤 
contains ten values, including the coefficients of travel time for 

auto (𝜃𝑢𝑤
𝑎𝑢𝑡𝑜_𝑡𝑡), in-vehicle-time for public transit (𝜃𝑢𝑤

𝑡𝑟𝑎𝑛𝑠_𝑡𝑡), 

access time for public transit (𝜃𝑢𝑤
𝑡𝑟𝑎𝑛𝑠_𝑎𝑡), egress time for public 

transit ( 𝜃𝑢𝑤
𝑡𝑟𝑎𝑛𝑠_𝑒𝑡 ), number of transfers for public transit 

(𝜃𝑢𝑤
𝑡𝑟𝑎𝑛𝑠_𝑛 ), travel time for non-vehicle (𝜃𝑢𝑤

𝑛𝑜𝑛_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑡𝑡 ), trip 

monetary cost (𝜃𝑢𝑤
𝑐𝑜𝑠𝑡 ), mode constant for auto (𝜃𝑢𝑤

𝑎𝑠𝑐_𝑎𝑢𝑡𝑜 ), 

mode constant for public transit ( 𝜃𝑢𝑤
𝑎𝑠𝑐_𝑡𝑟𝑎𝑛𝑠 ), and mode 

constant for non-vehicle (𝜃𝑢𝑤
𝑎𝑠𝑐_𝑛𝑜𝑛_𝑣𝑒ℎ𝑖𝑐𝑙𝑒). Figure 2 shows the 

distribution of travelers’ value of time (VOT), from which we 
find that the VOT in NYC is generally higher than other areas 
in NY state, and that within NYC, trips related to Manhattan 
and trips pointing to JFK airport have relatively higher value 
of time. These are consistent with our empirical knowledge.  

Figure 2.  Travelers’ value of time (VOT) at block-group OD level  

B. Pre-settings and Performance Metrics

The budget level and service characteristics should be
defined before running the optimization model. The values of 
these parameters are listed in Table II. The trip fare of the new 
mobility service is set to half of the on-demand mode, and the 
trip duration of the mobility service is set to the trip duration of 
on-demand mode plus a five-minute waiting time. We use 
relative trip fare and duration for simplicity, while price level 
and performance can also be defined using functions. Three 
budget levels are considered, including: (1) 𝑂 = 5, ℱ𝑚𝑎𝑥 =
2,000; (2) 𝑂 = 10, ℱ𝑚𝑎𝑥 = 5,000, and; (3) 𝑂 = 10, ℱ𝑚𝑎𝑥 =
10,000. 

TABLE II.  VARIABLES DEFINING THE NEW MOBILITY SERVICE 

Variable Explanation Value in this paper 

𝑂 
The maximum number of 
operating zones 

[5, 10] 

ℱ𝑚𝑎𝑥 
The maximum fleet size in total 
(vehicles/day) 

[2000, 5000, 10000] 

𝐹𝑚𝑎𝑥, The maximum fleet size in each 
operating zone  

Default to 2ℱ𝑚𝑎𝑥/𝑂 

𝐹𝑚𝑖𝑛 
The minimum fleet size in each 
operating zone  

Default to ℱ𝑚𝑎𝑥/2𝑂 

𝑡𝑢𝑤
𝑘̂  

Trip duration (min) of the new 
mobility service on the OD pair 

Default to on-demand 

travel time plus a five- 

minute waiting time 

𝑐𝑢𝑤
𝑘̂  

Trip fee ($/trip) of the new 
mobility service on the OD pair  

Default to half of the 

on-demand mode 

𝐿 
The maximum distance 
(km/day) a vehicle can serve  

Default to 200 km per 

day 

𝑇 
The maximum number of trips 
a vehicle can serve per day 

Default to 10 trips 
per day 

We consider several metrics when comparing the 
optimization results, including the number of operating OD 
pairs, vehicle kilometer traveled per vehicle (km/day), total 
revenue (objective 1, $/day), average welfare (objective 2, 
measured as total change of consumer surplus), and welfare 
disparity (objective 3, measured as change in consumer surplus 
in disadvantaged communities minus that in non-
disadvantaged communities). 

C. Optimization Results

The model is solved with Gurobi package in Python, which
takes 5-8 min for each service region optimization on a local 
machine with Intel (R) Core (TM) i7-10875H CPU and 32GB 
installed RAM. Table III compares the performance metrics of 
single-service region optimization under different objectives 
and budge levels, in which the baseline refers to the current 
states observed from Replica’s data. Each entry represents the 
value of a metric, and the number in the parenthesis is the 
percentage change compared to baseline (without any new 
mobility services). Several interesting points were found. 

• Entries in bold font indicate the extreme values found for
each metric across the three different objectives.

• The percentage change of the metrics is relatively small,
though most of them have the expected signs. This is
because the new mobility service can only impact a small
part of the total trips (only 2.5% given budget level C).

• Maximizing total revenue and maximizing total welfare
will increase welfare disparity by up to 0.59%, and
revenue per vehicle decreases with the increase of
maximum fleet size (particularly from 5,000 to 10,000).

• Minimizing welfare disparity helps to decrease
transportation inequities by up to 7.37%, though this is at
the cost of losing total revenue. Moreover, its service
region includes more OD pairs and smaller VKT per
vehicle (targeting at underserved or rural block groups).

TABLE III.  METRICS OF THE OPTIMIZATION RESULTS 

Baesline Obj. 1 Obj. 2 Obj. 3 

A. 5 zones, 2,000 vehicles

Num. OD pairs -- 694 1,387 1,492 

VKT/vehicle (km) -- 63 57 33 

Total revenue ($) -- 148,635 136,442 73,223 

Average welfare 5.443 
5.452 

(+0.16%) 
5.454 

(+0.19%) 
5.446 

(+0.04%) 

Welfare disparity 0.482 
0.483 

(+0.02%) 

0.484 

(+0.37%) 

0.471 

(-2.48%) 

B. 10 zones, 5,000 vehicles

Num. OD pairs -- 2,503 3,445 3,439 

VKT/vehicle (km) -- 62 53 33 



6 Choice-Based Service Region Assortment Problem: Equitable 
Design with Statewide Synthetic Data 

Total revenue ($) -- 350,623 308,357 171,805 

Average welfare 5.443 
5.460 

(+0.29%) 
5.462 

(+0.33%) 
5.449 

(+0.10%) 

Welfare disparity 0.482 
0.483 

(+0.06%) 
0.484 

(+0.38%) 
0.459 

(-4.84%) 

C. 10 zones, 10,000 vehicles

Num. OD pairs -- 6,151 7,050 5,202 

VKT/vehicle (km) -- 55 46 28 

Total revenue ($) -- 593,845 538,666 237,878 

Average welfare 5.443 
5.470 

(+0.49%) 
5.476 

(+0.59%) 
5.452 

(+0.14%) 

Welfare disparity 0.482 
0.485 

(+0.40%) 

0.486 

(+0.59%) 

0.447 

(-7.37%) 

Table IV lists the optimal service region given different 
scenarios, in which each figure is a snapshot of the online maps 
visualizing operated OD pairs and served counties (for larger 
images please click the OD pairs under each figure). We find 
that optimal service region under objective 3 is different from 
objective 1&2, by covering more OD pairs and counties in rural 
areas. 

TABLE IV. VISUALIATION OF OPTIMAL SERVICE REGION 

A. 5 zones, 2,000 vehicles

Objective 1 (online map) Objective 2 (online map) 

Objective3 (online map) 

B. 10 zones, 5,000 vehicles

Objective 1 (online map) Objective 2 (online map) 

Objective 3 (online map) 

C. 10 zones, 10,000 vehicles

Objective 1 (online map) Objective 2 (online map) 

Objective 3 (online map) 

IV. DISCUSSION AND CONCLUSION

A statewide transportation model considering user 
preferences can play a critical role in improving collected 
revenue and behavioral equity by providing state policymakers 
with a comprehensive, data-driven and transparent approach. 
This paper shows the feasibility of formulating a choice-based 
optimization model for mobility service region design. The 
challenges of incorporating user preferences in large-scale 
models are addressed by combining (1) synthetic population 
datasets that contain trips in underserved areas and (2) 
deterministic taste coefficients estimated within the AMXL 
framework. 

The proposed optimization model takes 𝑋𝑢𝑤
𝑘 , 𝑑𝑢𝑤 , and 𝜃𝑢𝑤

as inputs, and outputs optimal service region including the 
service zones (𝑦𝑖), operating OD pairs (𝑥𝑢𝑤), and fleet size per 
OD pair (𝑓𝑢𝑤 ). The single-service region design takes only 
several minutes to be solved on a local machine, which can 
serve as an efficient tool for statewide mobility service 
providers regarding total revenue or transportation equity.  

There are many new research opportunities and use cases 
to be addressed. Though the performance and cost of the new 

mobility service is defined by a set of values (𝑋𝑢𝑤
𝑘̂ ), they can 

be replaced by cost or performance functions in response to 
travel demands. This won’t increase the model complexity as 
long as travel demands can be directly computed using 
deterministic coefficients. However, an essential assumption in 
this study is that the total travel demand on each OD pair (𝑑𝑢𝑤) 

and performance of other modes (𝑋𝑢𝑤
𝑘 , 𝑘 ≠ 𝑘̂) are fixed, i.e.,

insensitive to the new mobility service. This assumption is 
common in choice-based optimization studies but does not 
hold in every case. It requires further study in the future. 

APPENDIX 

TABLE V. NOTATIONS FOR MULTI-SERVICE REGION ASSORTMENT 

Decision variables (multi-service region assortment) 

𝑦𝑖
A binary variable that indicates whether county 𝑖𝑍  is 

included into the service region of service A and B 

https://xr2006.github.io/sample/Replica_project/single_service/Objective1_5_2000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective2_5_2000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective3_5_2000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective1_10_5000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective2_10_5000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective3_10_5000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective1_10_10000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective2_10_10000.html
https://xr2006.github.io/sample/Replica_project/single_service/Objective3_10_10000.html
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𝑥𝑢𝑤
𝐴 , 𝑥𝑢𝑤

𝐵
Binary variables that indicate whether the OD pair from block 

group 𝑢𝑁  to 𝑤𝑁  is operated by service A and B, 

respectively 

𝑓𝑢𝑤
𝐴 , 𝑓𝑢𝑤

𝐴 The fleet size (vehicles/day) of service A and B on OD pair 

from block group 𝑢𝑁 to 𝑤𝑁, 𝑢 ≠ 𝑤 

To showcase how to formulate the multi-service region 

assortment as a QP problem, Eqs. (A1)-(A4) are formulated to 

define the objective function of maximizing total revenue: 

max
𝑦𝑖,…,𝑓𝑢𝑤

𝐵
∑ ∑ 𝑐𝑢𝑤

𝐴 𝑑𝑢𝑤
𝐴

𝑤∈𝑁𝑢∈𝑁

+ ∑ ∑ 𝑐𝑢𝑤
𝐵 𝑑𝑢𝑤

𝐵

𝑤∈𝑁𝑢∈𝑁

(A1) 

𝑑𝑢𝑤
𝐴 = 𝑑𝑢𝑤

𝐴_𝐴𝑥𝑢𝑤
𝐴 (1 − 𝑥𝑢𝑤

𝐵 ) + 𝑑𝑢𝑤
𝐴_𝐴𝐵𝑥𝑢𝑤

𝐴 𝑥𝑢𝑤
𝐵 (A2) 

𝑑𝑢𝑤
𝐴_𝐴 =

𝑒𝑉𝑢𝑤
𝐴

∑ 𝑒𝑉𝑢𝑤
𝑘|𝐾−|

𝑘=1 + 𝑒𝑉𝑢𝑤
𝐴

(A3) 

𝑑𝑢𝑤
𝐴_𝐴𝐵 =

𝑒𝑉𝑢𝑤
𝐴

∑ 𝑒𝑉𝑢𝑤
𝑘|𝐾−|

𝑘=1 + 𝑒𝑉𝑢𝑤
𝐴

+ 𝑒𝑉𝑢𝑤
𝐵

(A4) 

where the demand of service A on OD pair 𝑢𝑤 is defined as a 

combination of possible demands and the decision variables. 

Eq. (A2) ensures that if 𝑥𝑢𝑤
𝐴 = 0, then 𝑑𝑢𝑤

𝐴 = 0, and if 𝑥𝑢𝑤
𝐴 =

0, 𝑥𝑢𝑤
𝐵 = 1, then 𝑑𝑢𝑤

𝐴 = 𝑑𝑢𝑤
𝐴_𝐴𝐵. Eqs. (A3) - (A4) defines the 

demand of service A when only service A operates on OD pair 

𝑢𝑤 (𝑑𝑢𝑤
𝐴_𝐴) and when both service A and B operate on OD pair 

𝑢𝑤 (𝑑𝑢𝑤
𝐴_𝐴𝐵), respectively. 
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